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A new discretization method for the three-dimensional Euler equations of gas
dynamics is presented, which is based on the discontinuous Galerkin finite element
method. Special attention is paid to an efficient implementation of the discontinuous
Galerkin method that minimizes the number of flux calculations, which is gener-
ally the most expensive part of the algorithm. In addition a detailed discussion of
the truncation error of the presented algorithm is given. The discretization of the
Euler equations is combined with anisotropic grid refinement of an unstructured,
hexahedron-type grid to achieve optimal resolution in areas with shocks, vortices,
and other localized flow phenomena. The data structure and searching algorithms
necessary for efficient calculation on highly irregular grids obtained with local grid
refinement are discussed in detail. The method is demonstrated with calculations of
the supersonic flow over a 1éamp and the ONERA M6 wing under transsonic flow
conditions. @ 1998 Academic Press
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1. INTRODUCTION

The discontinuous Galerkin (DG) finite element method has some unique features v
make it an excellent choice for the solution of the Euler equations of gas dynamics
anisotropic, local grid refinement. Local grid refinement is a very flexible tool to incre
grid resolution in regions with complex or nonsmooth flow phenomena, but it genel
results in highly irregular, unstructured grids, which put severe demands on the acci
and flexibility of the flow solver. The DG finite element method is an extremely lo
scheme and therefore less sensitive to grid regularity, which makes it a good candidate
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combined with local grid refinement. This paper discusses a new algorithm which ext
the discontinuous Galerkin finite element method for the Euler equations of gas dyna
to three dimensions in combination with local grid refinement to improve solution qua
Special emphasis will be put on an efficientimplementation and study of discretization
and data structure for the DG finite element method on unstructured grids with hexah
elements.

The DG finite element method is a mixture of a finite volume and finite element mett
It was first proposed by Lesaint and Raviart [13] and extended to hyperbolic conserv
laws by Cockburn, Shet al.[7, 9, 10]. In the DG finite element method the flow field i
each element is locally expanded in a polynomial series and equations for the polync
coefficients are obtained. The DG finite element method therefore not only solves eque
for the flow field, but also for the moments of the flow field. No interpolation is necessar
determine the flow state at the element faces in the flux calculation. The information &
the flow state at the internal and external element faces can be directly obtained frot
polynomial expansion in each element. The only additional information from neighbo
elements is the element mean flow state, which is used in the slope limiter. In this
an almost completely local scheme is obtained, which does not lose accuracy on h
irregular grids.

The use of separate equations for the flow gradients in the DG finite element metho
as important benefit that it is not necessary to determine the flow gradients from de
neighboring elements. This is commonly done in MUSCL type finite volume methods u
Gauss’ identity, but this method requires a certain grid regularity which is not requirec
the DG finite element method. The use of local grid refinement results in hanging nc
but the DG finite element method does not have any difficulty with hanging nodes bec
they do not enter the discretization due to the local series expansion of the flow field, w
results in a cell based scheme. A significant benefit of the cell based DG finite elel
method in comparison with node based finite element methods is that the mass mat
each element is uncoupled from other elements and it is not necessary to invert a large
matrix for the complete finite element system. The element based polynomial expa
in the DG finite element method makes it easy to use degenerated hexahedra, s
prisms and tetrahedra. The discontinuous Galerkin method, together with Runge—
time integration, is an excellent candidate for parallel computing due to it's local beha
as was demonstrated by van der Ven and van der Vegt [24]. A disadvantage of the DG
element method is that it requires more variables per element, because it is necess
store several moments of the flow field. The increase in number of variables does not
to be a limitation because grid adaptation will generally reduce the number of elenr
needed for a given accuracy and therefore reduce the memory requirements significe

The DG finite element method has until now primarily been used in two dimensic
Cockburn and Shu [8] applied the method on triangle based grids, while Lin and Chin
and Bey and Oden [5] used quadrilateral elements. The first extension of the DG 1
element method to three-dimensional flows was presented by van der Vegt [22] and w
discussed more in detail in this paper. Applications to three-dimensional vortical type fl
can be found in van der Vegt and van der Ven [23].

The second topic in this paper is the use of anisotropic grid refinement to impi
solution quality. Accurate solutions of three-dimensional flows with highly localized fl
phenomena frequently can only be obtained with reasonable efficiency using grid adapt
Several types of grid adaptation are possible, the most important methods for compre
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flow are local grid refinement¢refinement) and methods which redistribute grid point
(r-refinement). One of the main benefits of local grid refinement is that one does not |
global constraints on the grid generation. In this paper a new grid adaptation metho
the three-dimensional Euler equations of gas dynamics will be discussed.

The numerical method is a combination of local grid refinement of hexahedral elem
with the DG finite element method. The grid adaptation is done independently in all th
directions to allow for maximum flexibility. Many local flow phenomena, such as shoc
and shear layers, are locally pseudo two-dimensional and anisotropic grid refineme
more efficient in these cases than isotropic refinement.

Until now most of the unstructured algorithms for the Euler and Navier—Stokes equati
use tetrahedral elements for a review see [11]. The use of hexahedral, unstructured g
a more recent development, e.g. Aftosmis [1]. Hexahedra suffer less from loss of accu
due to anisotropic refinement than tetrahedra, because the elements do not degenera
successive refinements in one direction. Hexahedron elements are also more accur
highly stretched grids which are necessary for applications to viscous flows. In orde
deal with complicated geometries, elements such as prisms and tetrahedra are used 1
efficiently with topological degeneracies. An additional benefit of hexahedra is the fact
the initial coarse grid can be provided by standard multiblock grid generators which
widely available.

The data structure for anisotrogierefinement is more complicated than for unstructure
methods without grid refinement. In the present study it is found to be more efficien
replace the commonly used element based octree data structure with a face base
structure. Especially when one does not want to impose restrictions on the numbe
neighboring elements. The description of this data structure is given special attention ir
paper.

The outline of the paper is as follows. First, the discontinuous Galerkin finite elem
method will be discussed for the three-dimensional Euler equations of gas dynamics,
lowed by a study of the discretization error of the DG method presented in this pa
Next, the grid adaptation procedure will be discussed and an overview of the data stru
and searching algorithms necessary for anisotropic grid refinement with hexahedral
elements will be given. Finally, the grid adaptation algorithm will be demonstrated w
calculations of the supersonic flow about & #@mp and with calculations of the ONERA
M6 wing under transsonic flow conditions.

2. GOVERNING EQUATIONS

The Euler equations for inviscid gas dynamics in conservation form can be expresse
a a
—UX, t)+ —FjUX, 1) =0, (X,t) e 2x (0, T), 1)
at BX]‘

with initial condition U(x, 0) =Up(x), X €  and boundary conditiorJ(x,t)|3o =
B(U, Uy,), (x,t) € Q2 x (0, T), whereB denotes the boundary operator adung the pre-
scribed boundary data. Hefe € R® is an open domain with boundadg c Q and
t € (0, T) represents time. The summation convention is used on repeated indice
this paper. The vectors with conserved flow varialiles? x (0, T) — R® and fluxes
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Fi,j ={1 2 3} F;: R"— R are defined as

o puUj
U=1{ pu |, Fj = | puiuj + pdij | .
pE uj(pE+ p)

wherei = {1, 2, 3} and p, p, and E denote the density, pressure, and specific total
ergy, u; the velocity component in the Cartesian coordinate directignsnd §;; the
Kronecker delta symbol. This set of equations is completed with the equation offstate:
(y —Dp(E — %ui u;j), with y the ratio of specific heats.

3. DISCONTINUOUS GALERKIN APPROXIMATION

The discontinuous Galerkin approximation of the Euler equations is defined by the
lowing steps:

e Suppose the open domdmnis a polyhedron and denote By a tessellation of2 into a
disjunct set of polyhedri, j € N*, such thatK; = Q. Each polyhedroi hasn faces
e, i € NT with Uiel = 8K C K. Each faces can connect to multiple face.. The
faceseg, are splitinto subfaces (K', j) = € Nek.. The faces, (K, j) therefore always
connect to only two neighboring elementsinviz. K andK’. This greatly facilitates the
update of the fluxes through element boundaries. The boundaryd@(zegm are denoted
bl . As basic elements hexahedra= 6) are used, but in order to deal with topologicall
degenerated cases, hexahedra with degenerated edges, such as prisms and tetrah
allowed when necessary.

e Each of the element&; € 7; is related to the cubic master eleméht= [—1, 1]3,
with local coordinatest = (£, 5, ¢)T; &, n, ¢ € [—1, 1], by means of the mappirfk : X €
K — x € K, using the standard linear finite element shape functions

Fr DX(E 0.0 =Y X i (%), )
i=1

with v; (%) trilinear element shape functions arld the coordinates of the corner point:
of the hexahedroiK (mx = 8). More details about the mappirg can be found in the
Appendix.

e DefinePk(K)asthe space of polynomial functions of degrdeon the master element
K: PX(K) = spari¢;, j = 0,..., M}. In this papeM is restricted to 3, so the four basis
functionsg; are¢; € {1, &, 1, ¢}.

¢ DefinePK(K) as the space of functions associated to function%ki(rﬁ) through the
mappingFy: PX(K) = spar¢; = ¢j o F¢t, j =0,..., M}.

e DefineVi(K) = {P(K) = (p1,..., ps)T|pi € PY(K)}, thenU(x, t)|x can be ap-
proximated byJn(x, t) € Vi(K) ® CY[0, T] as

3
Un(x, 1) = PUX DIk) = Y Un(K, )pm() ©)

m=0

with P the projection operator to the finite-dimensional spdgeK ).



50 VAN DER VEGT AND VAN DER VEN

A major difference with standard node-based Galerkin finite element methods is that
expansion ofU(x, t) is local in each element, without any continuity across eleme
boundaries. This has as the important benefit that hanging nodes, which frequently
pear afterh-refinement, do not give any complications because they do not arise in
formulation of the discretization scheme.

A weak formulation of the Euler equations is obtained by multiplying Eq. (1) wit
Wy € VE(K), integrating over elemeri{ using Gauss’ identity, and replacing the exac
solutionU with its approximatior, € Vi(K) ® C*[0, T]:

Find U, € Vi(K) ® C0, T], such thatUp(x,0) = P(Uo(X)|x) € Vi(K), and for
YW € VE(K),

d
at /. WEOUn(x, ) dQ = => /,, W] (x)(nT(X)F(Un))dS
p VS

— Z/bp W] 0T (X)F(B(Un, Uy))) dS
p K

+ / VW] () F(Up) d<2, (4)
K

with F = Fj, j = {1, 2, 3}, andn the unit outward normal vector at the fasfsandbf .
Introducing the polynomial expansions fdr andWj, into the weak formulation of the
Euler equations we obtain the set of equations for the coefficignts

9 -
Eumi(K,t)/ Pn(X)Pm(X) A2
K

= =3 [ 840000 Un dS= 3 | gn00m; 00 (B(U, UL dS
[ p K

+/ 0900 £ (U dQ, Te(l....5hnefo,....3), 5)
K 8XJ

with F;; theith element of flux vectoF;. The integral on the left-hand side of Eq. (5)
represents the mass mathk(K) with elementdM,(K) for which an analytic expression
is given in the Appendix. The relation given by Eq. (5) can be expressed symbolically -

0 ~
S Umi (K = Lni(Un) = M2 Rai (U), (6)

wherel i (Up) stands symbolically for the spatial nonlinear operatorRudJy) represents
the components of the right-hand side of Eq. (5).
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3.1. Flux Calculation

Due to the fact that the polynomial basis functid?lg K ) are discontinuous across ele
ment boundaries it is necessary to replace the flux at element boundaries with a mon
flux, H(UM®X U2y which is consistent (U, U) = nT F(U) = F(U), [9]. Hereu™
andUZ™) denote the value dfi, atx € 9K taken as the limit from the interior and exte
rior of K. The use of a monotone Lipschitz fliikintroduces upwinding into the Galerkin
method by solving the (approximate) Riemann problem givefUty*™’, UP"). Suitable
fluxes are those from Godunov, Roe, Lax—Friedrichs, and Osher. In this paper the (
approximate Riemann solver [16] is used, because of its good shock capturing capak
and the possibility to easily modify the Riemann problem to account for boundary co
tions. An important additional reason for the use of the Osher scheme is that it give
exact solution for a steady contact discontinuity and, therefore, has a very low nume
dissipation in boundary layers, [21], which is important for future extension of the algorit
to the Navier—Stokes equations. The Osher approximate Riemann solver is defined a

_ 1/(. - . .
int(K) | ext(K)y __ int(K) ext(K)
H(UR™, Urt™) = > (F(Uh ) +F(UY) — Xa:/ra<u;"‘<“),u§““) |0F dF), (7)

whereU, T, is a path in phase space betwadfi* andu®® Details of the calculation
of this path integral in multidimensions can be found in [16]. At the boundary fa%es
the pathl’, must be modified to account for boundary conditiégfi&), U,,), with U,, the
prescribed boundary data. In this way a Riemann initial-boundary value problem is sc
instead of an initial value problem [16], and a completely unified and consistent treatme
the flux calculations is obtained, both at interior and exterior faces. In the rest of the
therefore no distinction will be made between flux calculations at internal or bounc
faces.

The flux integrals in Eq. (5) can be calculated using Gauss quadrature rules. Cocl
et al.[9] showed that if the quadrature rules for the surface integrals are exact for pol
mials of degree R+ 1 and exact for polynomials of degrele dr the volume integrals then
the order of accuracy of the numerical approximation of the flux integrals on the right-t
side of Eq. (5) ik + 1. In order to preserve uniform flow for hexahedral grids with eleme
boundaries which have a twist, it is necessary to use quadrature rules which are exa
polynomials of degree 3. This can be accomplished using four- and nine-point pro
Gauss quadrature rules for the element face and volume integrals, respectively. The n
of quadrature points can be slightly reduced by using more sophisticated multidimens
Gauss quadrature rules (see Stroud [19]), but the direct application of the Gauss qt
ture rules to the integrals on the right-hand side of Eq. (5) requires a prohibitively Iz
number of flux calculations. This makes the discontinuous Galerkin method unneces:
expensive when only second-order accuracy is required. Recently this problem was
addressed by Atkins and Shu [2], but they restricted themselves to tetrahedral elen
Tetrahedral elements result in significantly easier flux integrals than hexahedral elen
but tetrahedra are not easy to use for anisotropic grid refinement, because successive
ments in one direction create tetrahedra with very small angles between faces result
large numerical errors. A second-order accurate discontinuous Galerkin discretizatio
be obtained using the following approximation to the flux integrals at the element boun
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facesy:

/ dn OO H; (UR X, Uﬁx“m)ds;%(ﬁ, (U + Ry (Uﬁxt('“))/ $n(ON;(x)dS
s

1 R
- = Z/ __JaF|dT /¢n(x)ds iefl,....5,ne(0,...,3
2\ Irapegz S
(8)

with H; andF;; the elements of the vectoks andF;, respectively. The flow staté?lh =
(1/|s£ D fsg Un(x) dSin the element face are defined as

|n 1 3 "
) qu /¢mK(x)dS )
1 3
U = Z K’ / ¢mk () dS (10)

sl

with K’ the index of the element connected to elentért the facesy . The sufficesK and
K’ of ¢ (X) refer to the limit ofp, (X) taken from the interior and exterior of elemdftat
facesy, respectively.

It is important to approximatdgh using the complete series expansionlygf given
by Eq. (3), because the naive approximatﬂ}nz Unh (6 =0,7=0, ¢ =0) does not result
in a second-order accurate discretization for elements which are a deformed cube.
ple analytic expressions for the element face mom@g@n(x)nj (X)dSare given in the
Appendix. The first componeith = 0) is the surface area normal vector used in finite vol
ume calculations, whereas the other moments represent cross-products between the e
face edges. The |ntegraf§p ¢n(X) d Sare calculated using a four-point Gauss quadratu
rule. With this modification the integration of the fluxes becomes approximately equi
expensive as for upwind finite volume schemes using an (approximate) Riemann solve
requires only one flux calculation for each element face.

Another important benefit of usingy, instead ofU (¢ = 0,5 = 0,¢ = 0) is that a
stronger coupling between the equations for the expansion coefficients is obtained, w
significantly improves stability. A detailed discussion of the order of accuracy of the f
discretization is given in the next section.

The volume flux integrals in Eqg. (5) can be further evaluated resulting in

3n(X)
/K 32(, Fij (Un) d®x =0, n=0,

=[x S®F;Und®%, n=1,23, (11)
with
SHR) = X, x X,
SP(R) = X¢ X Xe

S}(R) = X& X Xy,
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wherexg, X, andx, denote derivatives of with respect to the local coordinatésy, and
¢ of the master elemen€. The volume flux integrals in Eq. (11) are approximated as

/R S®)Fy (Up) &% = Fj (Up) /K SR) &% (12)

The geometric contributiorfR %-“()A() d3% can be calculated analytically and is discusse
in the Appendix. The flow fieldJy, for the volume integrals is defined as

_ 1 3A
U= — U/ X) d3x
h lKlmZ:()mK¢m()

> UnMmo(K), (13)

m=0

B Mo,o(K)

with My n(K) the elements of the mass matii for elementK.

3.2. Slope Limiter

The discretization of the flow field, Eq. (5), does not guarantee a monotone solt
without overshoots in areas with discontinuities. Cockbettral. [9] presented a local
projection method for the discontinuous Galerkin discretization of multidimensional sc
conservation laws, which makes the algorithm TVB stable and satisfies a maximum prin
when combined with a TVD Runge—Kutta time integration method [18]. Cockbtiah.
[9] used triangular elements and the extension to quadrilaterals is presented by Be
Oden [5]. The extension to the Euler equations is usually done with a local characte
decomposition, but in multiple dimensions this decomposition is only approximate anc
not guaranteed that the limiter satisfies a maximum principle. Therefore a slightly diffe
approach is followed and the multidimensional limiter proposed by Barth and Jespe
[4], with modifications due to Venkatakrishnan [25], is used directly on the conserva
variables. This limiter saves the considerable expense of computing the local charactt
decomposition.

Define for each componeh_l;,K, i ={1,...,5}, of the element averagEK = (1/|IK})
Ji Unoo de,
min __ ; . . ,
K = VKI;TE]II\IQK)(UI’K’ Ul,K )
max __ . T,
Uk = VKr’Qﬁz(K)(UI’K’ Ui k),

with N(K) the set of neighboring elements which satisfy(K’, j) # @, |K| the volume
of element, andU; k- the neighboring element averages. In order to maintain monotol
ity the approximate flow fieldJ, must satisfyUp(x) € [UR", UR®] vVx € K, which is
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accomplished with the limiter functior; , i € {1, ..., 5}:

Umax_ U; « _ _

¢L(;§ij;>,|fqn—4hK>Q
iK i,K

®; k = min umin — U; « . —

' vsb#0 | ¢ | ——— |, if U — Uik <0,
K L (UIK_ULK i,K i,K

1, if U — Uik =0.

HereU;*, are the components bf, used in the flux calculation at the cell facsﬁ’s(K/, -
The functiong, (y) replaces mifi, y) in the original Bart and Jesperson limiter and i

defined as
YA +2y

DefiningA = U — Uik, Ay = UM — Uk, andA_ = umn — Uk and replacingh2
with AZ + €2 a smoother limiter, with significantly improved convergence to steady sta
is obtained:

A2+ €2 +200,

, ifA>0,
AL +edk +202+ AN,
®; x = min A% + €2 +20N ,
LK VSE#@ 2 2 mK 2 ’ If A < 07
A% + bk +20%24+ AN
1, if A=0.

The coefficientsy, k are set equal tey, kK = (CAm. k)2 With Ap k the minimum distance
between the element face centers of two opposite faces of eléfriarthe local directions
g, n,or¢ of K. Aclose resemblance with the original Barth and Jesperson limiter is obtait
if C = 0. In this papelC = 1 is used, but for cases with strong shocks a slightly small
value should be used. Large values®prevent the limiter from being active in smooth
parts of the flow field, which improves convergence to steady state and accuracy, bu
can result in insufficient limiting in areas with discontinuities. The limigg is applied
independently to each component of the flow field:

Umi = ®i kUmi, i ={1,...,5},m={1,2 3}, nosummation o.

The coefficientddm, m = {1, 2, 3} in Eq. (3) represent the gradient of the flow field with
respect to the local coordinateskn This modification of the local gradient would violate
conservation oy in K if the element is not a rectangular cube, which can be corrected
modifying the coefficiento:

3
~ ~ 1 ~ . .
Upi =Upi + — (1 — ®j k) MmoUmi, 1 ={1,...,5}, no summation orn.
, Mo E ,

Y m=1

This relation is obtained directly from the conditiof®/|K|) fK Up(x)dQ2 = UK. The
limiting operation can now be expressed as

Umi = Hmni(Up)Uni, i ={1,...,5);n,m= {0, ..., 3}, no summation o
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with
1 A—-®)M1o/Moo (11— Pi)Mz0/Moo (1— Pi)Mz0/Moo
Moni(Un) = | o ° . .
0 0 0 d;

The limited flow fieldUy, in elementK then is equal to

3
Un(, 1) = > Un()gm (0. (14)

m=0

3.3. Time Integration

For each elemerK a system of ordinary differential equations is now obtained,
Mq L0k =R (Up)
K 9t K = RRK h),

with UK a vector with the moments of the flow field in each elemém, m={0,..., 3}
andR the right-hand side of Eq. (5). The equations (f&fat)UK are integrated in time
using the third-order accurate TVD Runge—Kutta scheme from Shu and Osher [18] w
is directly coupled with the limiting procedure discussed in the previous section:

Ui (K) = Tmpi (URY) (Tpi (K, 1) + ALK M H(K) Ry (On (K, 1))

U2 (K) = Mmpi (UY) (ZOW(K, t) + %Uéil)(K) + %At(K)M,;pl(K)Rn(Dg”))

~ 1- 2~ 2 ~
02 (K) = Mmpi (UP) <3Upi(K, B+ 3057 (K) + 3At(K)|\/|np1(K)Rn(U§$>)),
i €{1,...,5}, nosummation om,

Un(K,t+4at) =09, m,pefo,...,3}

where the limiting operatoFl i depends on the unlimited flow field after each Runge
Kutta stage. This Runge—Kutta scheme is stable for CFL numbers less than one, t
calculations are done with a CF= 0.7. The use of TVD Runge—Kutta methods in th
time integration is crucial for stability, as was demonstrated by Cockéuah [9] and is
also experienced during the present calculations. A significant difference of the preser
based finite element discretization in comparison with node based FEM is that the
matrix Mg of each element is uncoupled from other elements and can be easily inve
because itis only a 4 4 matrix.

For steady state calculations convergence is accelerated using local time stepping
local time stepAt (K) is determined from the relation:

—2|K|CFL

No o o o (15)
, 0%, o, — |0% £

AL(K) =
K

HereN (K") is the number of element facgsk: connecting to elemer€ . The symbolgi$,
andcy, represent the normal velocity and speed of sound at the end points of each su

K’ S ~
K sk | min (0%, — |0,




56 VAN DER VEGT AND VAN DER VEN

T, in phase space, connectitf"®’ and U™, This information is directly available
when calculating the Osher flux at the element faces and does not require any addit
work. The use of Eq. (15) to determine the local time step results in a very robust t
integration method.

4. ERROR ESTIMATES FOR THE FLUX APPROXIMATION

The numerical approximatiofi to the nonlinear operatdr, defined in Eq. (6), using the
approximations to the flux integrals Eqgs. (8) and (12), does not satisfy the conditions st
by Cockburret al.[9] necessary to obtain a second-order accurate approximatiorthe
operator.. In this section it will be demonstrated that these conditions are overly restrict
and that the numerical approximatigrpresented in this paper also results in a second-orc
accurate approximation to, but with at least four times less flux calculations. In order t
obtain an error estimate fob — £| the following contributions have to be considered:

e An estimate for the error in the numerical discretization of the surface flux integr:
Eqg. (8). This estimate is obtained using a Taylor series expansion with remainder for
flux Fj (Un(x, t)) at both sides oS&:

’/SFij (Un(X, 1)gn(x)n;j (x) d S— Fij(Gh(t))/Sd)n(X)nj(X)ds{

s

< K ®© ‘ /S AUI(X, D$n00N; 00 dS

with the constant(iljI (t) defined as

dFii [Un(D) + 0(Un(X. 1) (Un(x, 1) = Un(1))]
aU

Kih ® = sup ' ,

X€S,
D(#(Un(x,1)))€(0,1)

g given by Egs. (9)—(10) for both sides of the element face abgl(x, t) = U, (x,t) —
U, (%, t). The functiord depends oy, but has always values in the ran@e1). This error
estimate can be further refined using the following relatior/fbk (x, t),

3. 1
AU D) = Y Omi(K. ) <¢m(x> 5 /S¢m(x>d5> ,
m=1

which isimmediately obtained from the series expansiollfgx, t), Eq. (3), the definition
of U(t), Egs. (9)—(10) and the relatiafip(x) = 1, resulting in

'/SFij(Uh(x, )P (X)N;(X) dS —F; (Gh(t))/sqﬁn(X)nj(X)dS’

3
> UK, 1)
m=1

1
/¢m<x>¢n(x)nj(x>d8——/¢m(x)d8/¢n<x>n;(x>d8’. (16)
s ISl Js s

<K ®

X
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The contribution of the surface integrals of the basis functifis) and their product with
the normal vecton(x) can be further evaluated using the relation

32 f [X 4+ 6(X) (X —
9Xj 0Xk

‘/ f(x)ds{ < 1f®IS+2  sup
s 2

XeS
D(0(x)e(0,1)

)] ‘ IMil,  (17)

which is obtained using a Taylor series expansiot ©f) around the center of gravityof
faceS. Here I\7Ijk andx are defined as

~ 1
Mij/XijdS——/deS/Xde (18)
s ISI Js s

_ 1
X=-— | xdS 19
|S|/s (19)

The integraIS\7Ijk can be estimated using the following assumption.

Assumption 3.1. Each elemenK satisfies the conditiofx’| <h > 0,i € {1, ..., 8}.

The coefficient&' are linear combinations of the position vectgr®f the element ver-
tices and are discussed together with the estimateh@jtdn the Appendix. This assumption
implies that each element can be contained in a cube with maximum dimehsionall
sides.

The error in the numerical approximation of the surface flux integrals can now be
mated as

‘/SFU(Uh(X,t))cbn(X)nj(X)dS— Fij(Gh(t))/s¢n(X)nj(X)d5{

3
> Umi(K, 1)

m=1

(C1(X)h* 4 Co(x)h®), (20)

< sup Kj(®)
5}

S
jefd,...,

where the coefficientS; andC, only depend on derivatives @f, andn;atXx, but not ornx.
e The error estimate for the complete flux integrals of elenkerg obtained by consid-
ering the total flux through K,

6
[ FiUnx t0sn00my 0085 = 3 [y U 0)dm00m; 00 d
oK p—1 /&%

with e}, p € {1,..., 6}, one of the six faces of a hexahedral elemkntThe faces are
numbered such thaf, is opposite to face,‘frl (see Fig. 1). The normal vecto(x) at faces

ek ande? is defined as

With similar relations at the other faces. This relation results in an inward pointing nor
vector at faces wittp = 1, 3, or 5, sm(x) at these faces is replaced witn(x) and we
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FIG.1. Face and vertex definition of master elemint

obtain the estimate for the total flux througK,

/ Fy Un)n00n; 00 0
kil

3

-3 (Fij (Un.2p) / 900N} () dS— Fyj (Un2p-1) / ¢n<x>n,-<x>d8> ‘

p=1

3
< > Umi(K, 1)

m=1

sup K
je(L....5)

.....

3

X Z(lcl(@p) — C1(X2p-1)|h* + |C2(X2p) — Ca(X2p-1)|®)
p=1

3

> UK, 1)

m=1

< Ssup Kih(t)
je(d,....5

(C’'h® + C"h’), (21)

.....

where the supremum InﬁI is taken over alk € 9K and the suffixp refers to the face index.
In addition the fact is used that the functiddg(x) andC,(X) are Lipschitz continuous and
[Xop — X2p—1| < h.

e The Osher flux contribution in Eq. (7) can be expressed as

5 5
[OF(Un(x, ) dl = > (F(Up2x. 1) — F(Uptx. 1)),

P /ra(UL”““(x,t).,UEx“K)(x.t)> oy

(22)

with US"(x, t) € [UMx, t), U (x, t)]; n = (1, 2}, because the intermediate state

v"(x, ) are defined using Riemann invariants along the pBthi phase space. For a
detailed definition of the intermediate states in the Osher flux in three dimensions, see
In the smooth part of the flow field the difference betwdaé?ﬁ('()(x, t) and UﬁX“K)(x, 1),
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x € 3K is O(h?). This follows immediately from the polynomial expansiorif, Eq. (3),
which gives the following estimate for the intermediate states:

[Up2(x, t) — Upt(x, t)] < Ch? ¥x e 9K. (23)

The above relations, Egs. (22)—(23), can be used to obtain the estimate for the error
approximation of the integrals of the Osher flux over the element faces in Eq. (8),

5 5 .
(Z/ |aﬁ(uh<x,t>)|dr> ¢n(x)dS— (Z/ |aﬁ<U<t>)|dr> /qsn(x)dﬁ{
S\ 21 /T 1 YT s
-/ |aﬁ<U<t)>|dF‘ ‘/qsn(x)ds{,
'y S

with Ty, = Ty (UM (x, 1), U (x, 1)), andl, = e (UM (1), USO (1)), The contri-
bution with the difference between the Osher fluxes based on the pointwisedatd)
in the element fac& and the flux based on the element face averaged@;{ta can be
estimated as

xeS

‘/ |aﬁ(uh(x,t))|dr—[ |aF(U(t))| dT
T, Ty

<K? suSp|U|“’2(x, ) — Ut x 0 — (U0 - Uet o), (24)

with the coefficient<; defined a&( = n; K. This relation is obtained using the repre
sentation of the Osher flux given by Eq. (22). The right-hand side of Eq. (24) is estim
using Eq. (23), which implies that the difference in intermediate states at the interior
exterior parts of the element face are expressed as

UE2(x, t) — UEt(x, t) = AUZ(x, )h?,

with AUR (x, t) a Lipschitz continuous function,which yields the final estimate for the Osi|
fluxes:

’/ |8ﬁ(Uh(x,t))|dF—/ 19FU(t))|dT
Iy Iy

< KZ sup|aU®(x, t) — AU (1)| h?
XeS
< C'hd.

The following estimate for the error in the numerical approximation of the surface integ
of the Osher flux is subsequently obtained,

5 5
(Z/ |aﬁ<uh<x,t>)|dr> ¢n(x) dS— (Z/ |aﬁ(U<t>>|dF>/¢n(x>dS{
S \og=1"Ta a=1"Te s

<C'h’, (25)

where the estimate for the surface integral of the element face moments,

/¢n(x)d5{ < 48n?,
S
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is used, which is obtained with the relations for the element face Jacobian and the may
Fx, discussed in the Appendix.

e The error in the numerical approximation of the volume integrals can be obtained
procedure analogously to that for the flux integrals, but ®iteplaced by, and the mean
flow stateUy (t) defined by Eq. (13),

/ 09000 £ (Unx, 1) &% — F; (Un(0)) / @d’*x
K K 0Xj

3Xj
3 ~
> UK, 1)
m=1

< sup K3 (C3(X)h° + C4()h") (26)
}

jef1,...5

with the constanthj', (t) defined as

3Fij [Un(t) + 6 (Un(x, £))(Un(x, t) — Un(t))]
U, ’

3
Kiji (O = sup ’
xeK
D(0(Un(x,1)))€(0,1)

The coefficient<C; andC,4 only depend on derivatives @f, atx, but not onx.

The error estimate for the numerical discretization of the nonlinear opekgtoin
Eq. (6) using the approximations given by Egs. (8) and (12) is obtained by combin
the results of the estimates given by Egs. (21), (25), and (26), yielding

3
> Om(K,t)

m=1

||-ni —Eni| C/h5

IA

Mo

C//hz,

IA

3
> Umi(K, 1)

m=1

where the estimate for the mass mati,}| < C”/h® is used, which is discussed in
the Appendix. The error caused by the numerical approximation of the surface and vol
integrals and the Osher flux difference scheme is (%), which is of the same order as
the error in the polynomial approximation 0fx, t) by Un(x, t) in Eq. (3). A second-order
accurate spatial discretization which would satisfy the conditions required by Cockk
et al. [9] needs Gaussian quadrature rules with at least four quadrature points and w
therefore be at least four times more expensive.

It should be noted that the error estimates showing the second-order accurate s
accuracy of the discontinuous Galerkin discretization do not depend on the smoothne
the grid, demonstrating the fact that an extremely local discretization is obtained, whic
especially useful for grid adaptation based on local grid refinement and is discussed i
next section.

5. DIRECTIONAL GRID ADAPTATION

The grid adaptation procedure is based on subdividing elements independently in
of their three local coordinate directioris,n, or ¢. A coarse initial grid is used, which is
generated with a multiblock structured grid generator. This initial, structured multiblc
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grid is transferred into an unstructured hexahedral grid, and degenerated hexahedrz
as prisms and tetrahedra, are used when topological degeneracies make this necesse
grid is called the root grid. The root grid can also be generated directly, without first u
a block-structured grid, but this is not part of the present paper. After calculating the
field, elements are split in the locgldirection if

J
Rk
max REK
VK eTZh

> tolerance 27)

with the sensor functionﬁzf< for elementK defined as

RE: max Vi_Vi/zA 2‘ ’8
K iew...6 VK/eNS(K)( K k) TAER (28)

Here A&k is the length of elemerK in the local-direction, andN?¢ (K) the indices of the
neighboring elements of elemekitin the&-direction. Equivalent expressions are used f
then and¢ directions. The vectdv has as element¥: = (p, ug, Uy, Uz, ¥ Mfo P, Pt—ioss)
with p;_j0ssthe total pressure loss defined as

-1

1 p 1+y771M2 y/(y—=1
Pt—loss = —g l—i—VTMZ
7 Vs

andM = ,/uju;/cis the local Mach number with= /y p/p the speed of sound. The suffix
oo refers to free-stream values. These variables are used as the adaptation sensor |
they represent all relevant flow phenomena to be captured by the adaptation process w
preference for one or two specific phenomena, as is frequently done. The total pre
loss is added as a sensor because this is a conserved quantity outside shocks in i
compressible flow and gives a good measure for the numerical error. The sensor pre:s
in this section is based on the equidistribution principle (see, for instance, Maetraint
[15]). Its main advantage is that it prevents discontinuities, such as shocks, from domin
the refinement sensor, because at some point the element length in these regions be
so small that other flow features will start to become important.

Each element is adapted independently in all three directions by dividing the elern
which meet the adaptation criterion into two new elements.

6. DATA STRUCTURE

The success of an unstructured grid adaptation algorithm strongly depends on the
ciency of the data structure. The data structuréftype grid adaptation is more complicate
than forr -type adaptation, because one element can be connected to multiple neighk
elements. An important criterion in the design of the data structure is that no searc
is required in the calculation of the flow field. All the necessary searching to update
data structure is done during the adaptation step. This greatly enhances the efficiency
code, because all the basic operations then can be vectorized and parallelized using a
coloring and domain decomposition scheme. Until now, most of the applications with I
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refinement of hexahedron-type elements presented in the literature were restricted to
dimensional flows, where generally a quadtree data structure is used. In three dimen
this becomes an octree data structure. An octree data structure is, however, more suit
isotropic element refinement, where each element has eight children, but is inefficien
anisotropic grid refinement.

An efficient data structure for the DG finite element method is obtained using the elen
faces instead of the elements as the basic component. This has several major advar
The primary loop in a DG finite element method is the calculation of the fluxes, which ¢
be done without any searching using a face-based data structure. A second benefit of
based data structure versus an element-based data structure is that eacl"s'ﬁl(llﬁf’acje
can only have two neighboring elements, whereas each element can have an unli
number of neighbors. A loop over element faces can therefore be done without searc
using a face-based data structure. The face-based data structure has some resembl
the edge-based data structure commonly used with vertex-based unstructured algor
using tetrahedra.

6.1. Grid Structure

Each elemenkK is related to its master elemektwith the mappingFx, Eq. (2). The
faces and vertices of elemefitare numbered uniquely (see Fig. 1), and the topology of ea
element is defined by the coordinates of the vertices and the magping he following
arrays are used to define the grid structure: At@@(icell, n), (n =1, ..., 8) to store the
addresses of the vertices of the elements and #&flaggicell, n), (n =1, ..., 4) to store
the element connectivity. The first elementlcfreeis the address of the parent elemen
and the second and third elements are the addresses of the first and second childre
efficiency reasons, also, the type of refinemént( or ¢ direction) is stored.

Due to the dynamic behavior of the grid, points are added and deleted; it is importar
store the grid points efficiently. This is done using an AVL-tree data structure. For a dets
description of AVL trees see [12, 26]. The arid&ya,. contains the addresses of tkey,
andz-coordinates of the grid points. The AVL-tree uses the same key as proposed in |
VizZ. (X1, Y1, 21) < (X2, Y2, Z2) if X3 < Xo, Or if Xy =X andy; < Yo, Or if Xy =X, andy; = y»
andz; < z.

Together with vectors for the, y, andz-coordinates of the grid points this information
is sufficient to describe the grid. The use of an AVL-tree is very efficient. When an elem
is divided it is possible to find i (log,(N)) steps if a grid point already exists in the tree
or must be added. Both insertion and deletion of an element in the AVL tree can be dot
O(log,(N)) operations, witiN the number of grid points.

6.2. Establishing Face to Element Connectivity

The most difficult part oh-type grid adaptation on an unstructured hexahedral mest
to establish the face-to-element connectigtyK’, ). It is impractical to try to determine
in advance the large number of possible connections, even if only a limited numbe
neighboring elements is allowed. The following algorithm can find all possible connectic

At the root grid level all element connections are known, because they can be obta
from the original unadapted grid. At this level there is no local grid refinement.

For all root element faces the addresses and face indices of the two elements v
connect to this element face are stored in the dffarge Next, the treécTreeis traversed.
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For each element face which is the connection between the two children elefientd
K”, (S, (K", |) = €, Ask.(K”, |) = ek.), the addresses and face indices of the left a
right children are also stored in arréfylTree The set of these faces and the root eleme
faces are called elementary faces.

To find the remaining face to element connections each elementary face is mapped
domain [Q 1] x [0, 1], withlocal(s, t) coordinates. Then for each side of the elementary fa
the tredlcTreeis traversed to find the locés, t) coordinates of the four corners and cente
of the element faces of the children elements which connect to the elementary face.
can be done easily using the type of refineméng( or ¢ direction) stored in arraicTree
and the face index of the elementary element which is the same for all kids. If necessa
local coordinate systers’, t') of element facea{c is transformed to thés, t) coordinate
system of element fac .

The coordinates of the corner points and element face centers at both sides of the el
tary face are stored in arraijfaceKeyLandFaceKeyR For both sides of the element face
also the addresses of the children are stored in separate binarif need_ andIf Tree R
using the element face center as key. This part of the algorithm has some similarity tc
proposed in [20] to find hanging nodes in a node-based finite element method. Their |
lem is a point search problem, but the determination of the face to element connectivit
geometric searching problem and in this paper the alternating digital tree algorithm is
[6].

First, for all the elements on the left side of the element face, théf{fese Ris traversed
to find the element face at the opposite side which has the same corner points or is comy
contained in the left element face. This can be don®ifog,(N)) operations. The same
is done for all the elements at the right element face. In order to efficiently eliminate
to element connections which occur twice, it is necessary to store the new face to ele
connections in a binary tree.

After this search most face to element connections are found, but depending o
refinement strategy it is possible that one element face connects at both sides to mor
one element, Fig. 2. If this happens its face to element connection is not established
previous search and the element faces for which no connection can be found must b
into two faces on one of the sides of the elementary face, Fig. 3. These faces are

(8] (L) ©,1) (1,1

3
1 2
4
(0,0) (1,0) (0,0) (1,0)
I .
S s’

FIG. 2. Elementrefinement at left and right sides of elementary face. Elements 1 and 2 can not be conr
to elements 3 and 4 with one face.
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FIG. 3. Faces of elements 1 and 2 are split into subfaces such that each subface connects to one eler
each side.

subfaces. By cyclically splitting the element faces for which no connection can be fo
on one side in the localandt directions and restarting the search for those faces for whi
no connection was established, finally, all connections will be found. It is easy to tes
all element to face connections are found because their area should add up to one or
sides. After the search is completed, redundant subfaces are merged and all connectic
added to the tred Tree

The alternative to subdivision of element faces would be to further subdivide eleme
but this can easily generate new faces which connect to more than one element. This
not occur with the subdivision of element faces and the searching algorithm will finisk
finite time. The only complication of using subfaces is that they have to be accountec
in the flux calculation, because now the fageis subdivided into several faces instead o
one. The corrections to the surface integrals of the fluxes are discussed in the Appe
With this algorithm all face to element connections are found and the algorithm car
parallelized completely, because the determination of the subdivision of each elemel
face is completely independent from one another.

The calculation of the element face fluxes can be done easily in one loop over the ele
faces, without any difficulty caused by hanging nodes. This algorithm can be comple
vectorized and parallelized using a proper coloring and domain decomposition scheme
more details, see van der Ven and van der Vegt [24].

7. DISCUSSION AND RESULTS

The discontinuous Galerkin discretization of the Euler equations of gas dynamics
the grid adaptation algorithm have been tested on two cases. The first case is the supe
flow about a 10 ramp, which serves as a simple two-dimensional example to demonst
the grid adaptation algorithm. The second case is the transsonic flow about the ON
M6 wing [3, 27], which is a more complicated three-dimensional flow. The supersonic fl
field about a 10ramp generates an oblique shock with a33% angle with respect to the
flow direction. A nice feature of this problem is that it can be easily compared with t
exact solution for an oblique shock using the Rankine Hugoniot relations. The problel
also a good test case for the grid adaptation algorithm, because the shock is not line
with a grid line. The initial grid is uniform and consists of 600 elements and during ee
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TABLE 1
Number of Grid Points and Elements after Each Adaptation
Step for Supersonic Flow about a 10 Ramp

Adaptation step Elements Grid points
0 600 1302
1 862 1902
2 1132 2588
3 1513 3604
4 2049 5032
5 2789 7006
6 3799 9458

adaptation step, first, the elements with the lowest 5% of the sensor function value
deleted if they are not a root element, and subsequently the elements with the highes
of the sensor function values are refined, independently in each direction. Table 1 giv
overview of the number of elements and grid points after each adaptation step. A det
view of the final adapted grid is presented in Fig. 4, which shows that the grid is \
adapted to the shock. An interesting feature is that there is no adaptation ahead of the
because the flow field is uniformly supersonic. The pressure field over the ramp is sl

T
/‘I/ [ N ———

FIG. 4. Detail of grid for supersonic flow over a 1@amp after six adaptations.
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FIG. 5. Pressure distribution along a°1tamp for supersonic floM,, = 2.0 (- - -, original gri¢ — — —,
two adaptations; — —, four adaptations; , six adaptatiensp, final adapted grid).

in Fig. 5, which shows that the adaptation significantly improves capturing the shock
produces a nearly monotone shock profile. The value of the pressure behind the shocl
p2 = 0.304, compares well with the exact valyg,= 0.304746. Here the pressure is mad
dimensionless ap = p*/(y M2 ), with y the ratio of specific heaty (= 1.4) andM, the
free stream Mach number. Figure 5 also shows the grid points along the ramp in the
adapted grid.

The second test case is the ONERA M6 wing which has a trapezoidal planform v
30 leading edge sweep, and a taper ratio of 0.56. The wing sections are based o
symmetrical ONERA-D profile with 5% thickness/chord ratio. The wing tip is rounded |
rotating the tip section around its symmetry axis. The free-stream Mach number is 0.84
the angle of attack is.86°.

The grid adaptation was started by first calculating a steady solution on the initial g
which consists of 131,072 elements and 137,425 grid points. The grid is subseque
adapted three times, independently in all three directions, and the final grid consis
339,226 elements and 398,356 grid points. See Table 2 for more details. This adapt
process is completely controlled by the adaptation sensor. The only user interaction i
specification of the increase in the number of elements during each adaptation step, v
is done before the simulation started.

All calculations are done with alocal CFL number of 0.7. Figure 6 shows the converge
history of theL , residual. The spikes indicate the various instances when the grid is adar
It can be seen that convergence is relatively slow, because local time stepping is the
technique used to accelerate convergence. The implementation of a multigrid algor
to speed up convergence is currently in progress. One of the main factors influen
convergence is the activity of the slope limiter in the far field (for an analysis of this probl
see [25]). The Venkatakrishnan modifications to the Bart and Jesperson limiter significe
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TABLE 2
Number of Grid Points and Elements after Each Adaptation
Step for Transsonic Flow about the ONERA M6 Wing

Adaptation step Elements Grid points
0 131072 137425
1 199342 215499
2 259965 293471
3 339226 398356

improve convergence, but it can still be improved upon. Grid adaptation generally r
positive influence on convergence as can be seen in Fig. 6.

The time history of the lift forc&C, is presented in Fig. 7. The final valu€s = 0.290
andCp = 0.0136 are very close to the results obtained in literature, e.g. [27].

The use of the sensor functiofi® , Eqs. (27) and (28), which approximate the gre
dient of the primitive flow variables in all three directions, is effective in capturing t
relevant flow features. Generally the most dominant feature for adaptation is the st
tion region, especially on the initial coarse grid, but shocks and shear layers are |
captured well after refinement. An important feature of the sensor function is that
weighted with the local grid distance, which prevents one aspect of the flow from c
stantly dominating the adaptation process. This is strongly influenced by the pawgr of
Eq. (28).

Figure 8 shows the final adapted grid which clearly shows the lambda shock struc
The mesh adapts to regions with large flow activity and significantly improves resolu

107 F =
103 F =
5 ]
_8 J
2 107*p —
[a g [ i
g n h
107"k =
10_6:— E
C o v v ¢ 0 4 0 Loy s | S S T S SRS Y R Y T WY SR R R N

0 5.0x10° 1.0x107 1.5x107 2.0x10

Time Step

FIG. 6. Convergence history df, residual for flow field about ONERA M6 wing.
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FIG. 7. Convergence history of lift forc€, on ONERA M6 wing.
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FIG. 8. Final adapted grid on ONERA M6 wind/,, = 0.84, « = 3.06".



DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 69

in the shock regions and around the tip. Figure 8 shows that the two shocks merge a
span and separate at approximately 94% span. The shock structure compares well w
results obtained by Rauseh al. [17]. For efficient adaptation it proved very important t
be able to both add and delete elements, because initially the grid is primarily refined i
stagnation and rear shock regions which tend to become overresolved in the initial adap
stages. The position of the shocks also significantly changes during the adaptation pi
when the flow field becomes better resolved. The shock sensor is, however, qualitativ
further improvements in sensor functions based on some estimate of the numerical
will contribute to improved efficiency in the grid adaptation process.

The pressure coefficie@p for the initial grid and the three adapted solutions in cros
sections ay = 0.20S, 0.44S, 0.65S, 0.80S, and 090S, with Sthe wing span, are presentec
in Figs. 9to 13. Also the experimental data from [3] are presented. The pressure coeffici
defined ap = (p — poo)/%pvfo, with V,, the free-stream velocity. The correlation wit
the experiments is good, especially considering the fact that the calculations are inv
The improvements due to the adaptation are very clear, especially in resolving the inv
shock structure, and the adaptation process clearly converges to a final solution.

The calculations are done on the NEC SX-4/16 computer at NLR and required
proximatey 5 h for the ONERA M6 wing. The flow solution part of the program rur
approximately at a speed of 4.4 Gflops on seven processors, which is 31% of the peak
with seven processors. More details about the performance and parallelization strateg
be presented elsewhere.
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FIG. 9. Pressure coefficier®, at cross sectioly = 0.20S of ONERA M6 wing, M,, = 0.84, « = 3.06°
(---, original grid¢ — ——, oneadaptation; — —, two adaptations; , three adaptatiorse, experiment).
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FIG. 10. Pressure coefficier€, at cross sectioy = 0.44S of ONERA M6 wing, M, = 0.84, o = 3.06°
(- - -, original grid — — —, oneadaptation;,— —, two adaptations; , three adaptatiorsp, experiment).
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FIG. 11. Pressure coefficierZ, at cross sectioly = 0.65S of ONERA M6 wing, M, = 0.84, « = 3.06°
(- - -, original grid — — —, oneadaptation; — —, two adaptations; , three adaptationrsy, experiment).
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FIG. 12. Pressure coefficier@, at cross sectioy = 0.80S of ONERA M6 wing, My, = 0.84, « = 3.06°
(-- -, original grid — ——, oneadaptation; — —, two adaptations; , three adaptatiorsy, experiment).
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8. CONCLUDING REMARKS

The extension of the discontinuous Galerkin method using hexahedron-type elen
to three-dimensional inviscid, compressible flow has been successfully demonstratec
efficient technique for the flux calculations is presented and it is shown that the DG fi
element method can be nicely combined with anisotropic grid adaptation, which sig
icantly improved accuracy. A new algorithm to establish face to element connectivit)
presented which works well with-refinement of hexahedral elements and the DG finif
element method. Results of supersonic flow about‘aratp and transsonic flow about
the ONERA M6 wing are presented which demonstrate the efficiency of the adaptatiol
gorithm in capturing the lambda shock wave and resolving localized flow phenomena.
DG finite element method is a very local scheme which works well on highly irregular gr
and reaches a high efficiency on a parallel vector computer. Future work will especi
concentrate on improving convergence using a multigrid technique.

APPENDIX: ANALYTIC EXPRESSIONS FOR METRICAL COEFFICIENTS

The calculation of the geometric integrals which appear in the discontinuous Gale
finite element discretization can be done numerically with a Gauss quadrature rule of
ficient order or analytically. The use of Gauss quadrature rules is straightforward,
computationally expensive. In this appendix analytic expressions are given which rec
significantly less computational work than the use of quadrature rules. The calculatio
the integrals in the discontinuous Galerkin finite element discretization is greatly simpli
by expressing the mappirfk for hexahedral elements, Eq. (2), as

F iX(E, 1, 0) = Rk +XEE +R¥n + K& + Rxén + KR E¢ + Kn¢ +R%&ng. (29)

The position of the element vertice§ is indicated in Fig. 1. The coefficientg; =
(X%, 9%, 2%)T are obtained from the relation

(%, ... %8) = A(xg, ... x8)" (30)

with the matrix A defined as:

1 1 1 1 1 1 1
-1 1 -1 1-1 1-1
-1 -1 1 1-1-1 1
1{-12-1-1-1 1 1 1
8 1-1-1 1 1-1-1

1 -1 1-1-1 1-1

1 1-1-1-1-1 1
-1 1 1-1 1 -1 -1

I =
[l B

with identical relations fofg andzy, with x in Eg. (30) replaced by andz, respectively.

A.1. Mass Matrix

An important component in both the calculation of the mass matrix and the volu
integrals in Eq. (5) is the Jacobidp, of the mappindg~« . The Jacobiadg, for hexahedral
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elements can be expressed as

2 2 2
a(x9 ys Z) i jek
Jp =Det| = =3 "N syl (31)
D i
Here Det denotes the determinant of a matrix. The nonzero coeffitigntse defined as
boo0= D234 b120=Ds3s bo21 = Dg37
b100= D236+ D254 boo1= D274+ De3a D121 = Dgs7
B200= D256 b1o1=D2ga+ Do76+ Desa boo2= De74
bo10= D237+ D534 boo1=D2gs b102 = Desga
b110=D238+ D257+ D53 0o11=Ds74+ De37+ Dgza bo12=Dg7a
bo10=D2sg b111=2D765 b112= Dg76
bo,20 = D537 bo11=Dsgs
(32)
with
Dijk = Det(&', &, 85). (33)

The mass matriM,m(K) is now equal to
Mam(K) = / P (X)pm(X) dx
K

= /  Pn(®) (R g, (R) AR
K
= Nan+am,ﬁn+ﬂm,yn+ym, nme {O’ e, 3} (34)
withan = {0, 1,0, 0}, B, = {0, 0, 1, 0}, y» = {0, 0, 0, 1}. The coefficientdN,y, are defined

as

2 2 2
Nomi =YY > “bijk Que1+2 Qi +min Qi +nt)

with the coefficientsyj, given by Eq. (32) an@); defined as
1 .
Qi ==

A.2. Element Face Moments

The element face moment integrals can be calculated analytically using the m&gpin
Eq. (29):
e Face with index 1,

/1 Pn(ON(X) dS= 0o (Xk — Xk ) x (Xg —Xg), n=0, (35)
eK
=01 (Xk —Xg) x (Xg —xg), n=1, (36)
=05 (Xg —Xg) x (Xg —xg), n=2 (37)
=03 (xk —Xx) x (xk —x%), n=3, (38)
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with o, _{2, 5 6} The mtegralsfe2 dn(X)n(x) dS for a face with index 2 can be
obtained by a S|mple permutation of the vertiogs in Egs. (35)—(38): > 2; 7— §;
3— 4;5— 6; and usingr, = {3, 3. 3, ).

e Face with index 3,

/e3 n(N(X)dS= 0o (X —X%) x (Xg — X&), n=0, (39)
=01 (Xk — X&) x (Xg —xx), n=1, (40)
=0p (Xk —X%) x (Xg — X&), n=2 (41)
=03 (xk —Xg) x (Xg —x%), n=3 (42)

with o, _{2 5 2, 6} The mtegralsf dn(X)n(X) d S for a face with index 4 can be
obtained by a simple permutation of the vertiogs in Egs. (39)—(42): > 3; 2— 4;
5—7;6— 8;and usingr, = {3, . 3, ).

e Face with index 5,

/e5 PnON(X) dS= 0o (X — Xk ) x (Xg —X§). n=0, (43)
K
:Ul(XlK—XzK) X (XK_X4K)’ n:l, (44)
=0y (Xk —X¥) x (Xgk —X%), n=2 (45)
=03 (Xk —Xg) x (Xg —X%), n=3, (46)
with o, = {;, é 5 ——} The mtegralsfee dn(X)N(X) d S for a face with index 6 can be

obtained by a simple permutation of the vertiogs in Egs. (43)—(46): > 5; 2— 6;
3—7;4—8;and usingr, = {3, %, %, 1.

A.2.1. Subface corrections.Subfaces are defined as a rectangular subdorpgimg] x
[0, o] € 0K =[—1,1] x [-1, 1]:

e Faces with index = 1 or 2,

1
/ dn(X)N(X)dS= Z(pz — P02 — Ch)/ doX)N(X)dS n=_0,
S %
1
= Z(pz — po) (G — (11)/6j p1(X)N(X)d S n=1,

1
= Z(p2— pO)(d — q1>2/é $200N(X) d'S

8

+ %(pz L CAH) /é $ON()dS n=2,
= %(pz — p?(C2 — ) /é $300N(x)dS

+§(p§ — p}) (G2 — ) /é $o()N(X)dS n=3.
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e Faces with index = 3 or 4,

1
/ dn(XN(X)dS= Z(Dz — PO — ql)/é_ doX)N(X)dS n=_0,
S )
1
= S~ PO(@ - ql)"‘/ $100n(0 dS
+= (Pz — po (g —af / dpoX)Nx)dS n=1,

1
= Z(Dz — PO — Ch)/é do(X)N(X)dS n=2,

1
=g - P1)?(d2 — 01) /é P3()N(X)dS

=

+ é(pg - p) (@ - (11)/6j do¥)N(X)dS n=3.

e Faces with index =5 or 6,
1
/i dn(XN(X) dS= Z(pz — pu(0 — ql)/eJ do(XIN(X)dS n=0,
1
= g(P2— PV - a)? / $p100n(x) dS
+ = (pz - py(a —q? / doX)Nx)dS n=1,
1 2
= é(pz — P (e — ql)/é d2(x)N(x)dS

+

(ool o)

(b2 — p%)(qz—ql)/é 600N dS N =2,
1
= Z(pz— |01)(Qz—ql)/Gj do(X)N(x)dS n=3.

A.3. Volume Moments

[ S0d% = Z0 +xk —xk k) x (K + —xk -8
# g5l =k =) x (6 =k~ x)
/KSZOA()d%A(: %r(X6K+X8K — Xk — X¥) x (X% +Xg — Xx —XK)
#3306k~ =G+ ) x O k=)
[ S0d%= 306 +xk —xt k) x (<t +2 —xk —x)

(X =Xk =X +XR) X (X =Xk =Xk +X)-

Rle

+

75
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A.4. Estimates for Geometrical Quantities

The element face Jacobian at a surfaeel of a hexahedral element is defined as
Je = Xy x X¢|
and can be estimated using Assumption 3.1 and Eq. (29) as

Je < IR+ K+ R+ 13+ R0 IR+ 88 Il + 187 + &8 R*+ 88| ], n,¢e[-1,1]
< 12h?.

This estimate can be used to obtain the following estimatesfaf a vectorx € S, the
surface are4S|, and the integral®/;., defined in Eq. (18):

x| < 8h
S| < 48n?
IMjk| < 614",

Identical results are obtained for other faces of a hexahedral element.
Estimates for the volume Jacobian, defined in Eq. (31), and the mass matrix, Eq. |
are also obtained using Assumption 3.1 and Eq. (29):

J < 384°
[Mam| < C/h%.
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